

http://twitter.com/igalarzab

Index

what is tulip?
generators
coroutines
tulip components







“asynchronous
10 support
rebooted”







o . T Wy Al T ST A : -
& o - e % QIW? : '.lo .
. . - A 2N . ® o1 "\A o R ".’o-.
» i . : ES L ./-vﬂu..tlo
: < .-.-v-_“ ™ ’
-

'\.0" -8 ,a . 'Qe ’i.’do‘)‘d\“."s’.

protoc

5



some
necessary
history




python includes
generators

PEP 0255






def work hard normal () :
results = |[]

for i1 in (1, 10):
print ('Working very hard 3d times...'
results.append (1)

return results

def working hard generator() :
for i1 in (1, 10):
print ('Working very hard 3d times...'
yield i

if name == ' main ':
for result in
1f result $ 5 ==
print ('Eureka!')

break

for result in
i1f result $ 5 ==
print ('Eureka!')
break




result

S python3 001-generator.py

Working normal 1..
Working normal 2..
[..]

Working normal 10..
Eureka!

Generatoorrr..1
Generatoorrr...2
[..]
Generatoorrr..5
Eureka!




python includes
coroutines

PEP 0342




send values to
a generator




generators

US

coroutines



def list dir (path, target):
for dirpath, dirnames, filenames in os.walk (path) :
for filename in filenames:

target.send (filename)




def list dir (path, target):
for dirpath, dirnames, filenames in os.walk (path) :
for filename in filenames:
target.send (filename)

@Qcoroutine
def filter str(pattern, target):
while True:

filename = (yield)
if pattern in filename:
target.send (filename)




def list dir (path, target):
for dirpath, dirnames, filenames in os.walk (path) :
for filename in filenames:

target.send (filename)

@coroutine
def filter str(pattern, target):
while True:
filename = (yield)
if pattern in filename:
target.send (filename)

@coroutine
def print match() :
while True:
result = (yield)
print (result)




def list dir (path, target):
for dirpath, dirnames, filenames in os.walk (path) :
for filename in filenames:
target.send (filename)

@Qcoroutine
def filter str(pattern, target):
while True:

filename = (yield)
if pattern in filename:
target.send (filename)

@coroutine
def print match() :
while True:
result = (yield)
print (result)

if __hame == ﬂ_;main__':
list dir('.', filter str('py', print match()))




what the hell is that decorator?

def coroutine (func
Decorator to auto-start coroutines.
Got it from: PEP-0342

mwiwn

def wrapper (*args kwargs
gen func (*args kwargs
next (gen
return gen

wrapper. name func. name
wrapper. dict func. dict
wrapper doc func

return wrapper




result

S python3 003-coroutines.py

El Fart - La Mandanga.mp3
Julito Iglesias - Grandes exitos

[...]




python enhances
generators

PEP 0380



“A syntax is proposed
jor a generator to
delegate part of its

operations to another

generator”




yield trom



without yield trom

class TreeBasic

def 1nit (self, data, left=None, right=None
self . left left
self . data data
self.right right

def iter self

If selE_left
for node i1n self.left
yield node

yield self.data

if self. right
for node in self.right
yield node




with yield from

class TreeYieldFrom

def 1nit (self, data, left=None, right=None
self . left left
self . data data
self.right right

def iter self

if self.left
yield from self.left

yield self.data

i1f self . right
yield from self.right




let’s do an
scheduler



declaring the scheduler

class Scheduler

def init self

self.tasks deque

def schedule(self, task
self . tasks.append (task

def run (self
while self. tasks
task self . tasks.popleft

try

task.run
except

print ('Task %s has finished' % task
else

self . tasks.append (task




declaring what'’s a task

class Task
ID

def 1init (self, runner
Task.ID
self Task.ID
self.runner runner

def str self

return self

def run (self
result next (self.runner
print('[3d] %s' % (self result




some tasks examples

def list dir(directory
for item in os.listdir (directory
yield item

def echo_text numbe:_times
for i1 in number times
yield 'Hi dude!'




creating the tasks...

if name ' main '

s = Scheduler (

s .schedule (Task list_dir !
s .schedule (Task (echo text

s .schedule (Task echq_text

run



result...

$ python3 004-scheduler.py

[1] 001-generator.py
[2] HU dude!

[3] Hi dude!

[1] 002-pipeline.py
[2] Hi dude!

[3] HU dude!

[1] 003-coroutine.py
[2] HU dude!

[3] Hi dude!

[1] 004-tree.py

[2] Hi dude!

Task 3 has finished
[1] 005-scheduler.py
[2] HU dude!

[1] 00X-scheduler.pyc
Task 2 has finished

[...]




python introduces
tulip

PEP 3156







the event loop
multiplexes a
variety of events




IO events use the best
possible * selector for
the platiorm

* new module in Python 3.4
epoll, hqueue, IOCP



interoperability with
other frameworks
is one of the main

focuses




how to run the event loop?

loop asyncio

loop.run until complete (future

loop.run forever




how to run callbacks?

loop.call soon(callback, *args

loop.call later(delay, callback, *args

loop.call at(when, callback, *args




much more about
this in @saghul’s talk

check his slides!


http://twitter.com/saghul

coroutines




it’s not mandatory to
use them, but tulip
does it really well




we already know what’s a coroutine

coroutine

def get url (url
r, w yield from open connection('google.es'

w.write(b'GET / HTTP/1.0\r\n\r\n'
result yield from r.read
print (result

if name ' main '

_Ibop asyncio.get event loop
loop.run until complete (get url




futures



promises to return

a result or an
exception sometime
in the juture




they are really
*similar to
concurrent.jutures

* almost the same API



generators!

use yield yrom with
futures!




an easy example!

coroutine
def wait and resolve future (future
for 1 in
print('Sleeping 1 second'’
yield from asyncio.sleep

future.set result('Future is done!'’

if name ' main '

_Ibop asyncio.get event loop

future asyncio.Future
asyncio.Task (wait and resolve future (future

loop.run until complete (future
print (future.result







it’s a coroutine
*wrapped in a future

* in jact, it’s a subclass



tasks can make
progress alone,
unlike coroutines







the init schedules a
callbachk with the next step
of the coroutine

class Task (futures.Future

def init self, coro loop=None

self. loop.call soon(self. step




step runs the generator

def step(self, value=None, exc=None

try
1f exc i1s not None
result coro. throw (exc
elif wvalue i1s not None
result coro.send (value
else
result next (coro
except as exc
self.set result(exc.value
except futures.CancelledError as exc
cancel
except as exc
self.set exception (exc




AWESOMmeE

J ),



transports
and
protocols




transports and
protocols are used in
pairs




“the transport is
concerned about
how bytes are

transmitted”




“the protocol
determines which
bytes to transmit”




protocol calls transport methods (TCP)

write (data

writelines list_pf_data

can_write_eof

write eof

close




protocol callbacks (TCP)

connection made (transport

data received (transport

eof received (transport

connection_lost exc




simple ECHO
protocol using TCP
as the transport




class EchoServer (asyncio.Protocol

def connection made (self, transport
print ('Connected'
self . transport transport

data received(self, data

print('[R] ', data.decode
print('[S] ', data.decode
self.transport.write (data

eof_received self
pass

connection_lost self, exc
print ('Connection lost'




class EchoClient (asyncio.Protocol

def connection made (self, transport
self . transport transport
self . transport.write (b'Hola caracola'
print('[S] 'Hola caracola'

data_:eceived self, data

print('[R] ', data

eof_received self
pass

connection lost(self, exc
print ('Connection lost'
asyncio.get event loop stop




def start client (event loop
task asyncio.Task
event loop.create connection
EchoClient
'127.0.0.1"
8080

event loop.run until complete (task

def start server (event loop

server event loop.create server
EchoServer
'127.0.0.1"
8080

event loop.run until complete (server




‘' _main '
Sys.argv
print('Call with --server or --client flag'
sys.exit

loop asyncio.get event loop
loop.add signal handler (signal.SIGINT, loop.stop

if sys.argv '--server'
start server (loop

else
start client (loop

loop.run forever




and with UDP?



*almost the same!

* chech the examples!



demo?



questions?



thank you!



