
COMPUTER
VISION

MIGUEL	ARAUJO	@MARAUJOP@MARAUJOP

HTTP://BIT.LY/CODEMOTION2013



DISCLAIMER
JUST	AN	AMATEUR

HTTP://BIT.LY/CODEMOTION2013





















RED	LIGHT	HAL





HARDWARE



CAMERAS
Compact	cameras
DSLR	cameras	(Reflex)
Micro	cameras
USB	cameras	(webcams)
IP	cameras
Depth	field	/	3D	cameras



CHOOSING	A	CAMERA
Volume	/	Weight
Size	of	the	sensor,	bigger	is	always	better
Focal	Length
Resolution
Light	conditions
Adjustable
Price



PHOTOGRAPHY	101

3	PILLARS
Shutter	speed
Aperture
ISO	(Film	speed)

ALSO
White	balance
etc

http://bit.ly/poBjKi	



SHUTTER	SPEED

http://bit.ly/17hSKG



APERTURE
Depth	of	field

http://bit.ly/158gbyW



ISO



LIBGPHOTO2
Linux	Open	Source	project
Handles	digital	cameras	DSLRs/compact	cameras	through
USB.
Supports	MTP	and	PTP	v1	&	v2.





VISION
Compact	Cameras

Many	take	from	6-15	seconds	using	libgphoto2.	
Rarely	can	stream	video	in	real	time.
Rarely	can	adjust	camera	settings	on	the	go.





VISION
DSLRs

Good	time	response.
Very	well	supported,	many	features.
Many	camera	parameters	adjustable	on	the	fly.





VISION
Micro	Cameras

Custom	drivers
Proprietary	ports





VISION
Webcams

Bad	resolution
Handled	through	V4L2	
Poor	performance	in	bad	lighting	conditions
Not	very	adjustable



EXTRA
Lenses
Number	of	cameras



SOFTWARE



OPENCV
Open	Source
Known	and	respected
C++	powered
Python	bindings
Low	level	concepts,	hard	for	newbies
opencv-processing	and	others



SIMPLECV
Built	on	top	of	OpenCV	using	Python
Not	a	replacement
High	level	concepts	and	data	structures
It	also	stands	on	the	shoulders	of	others	giants:	numpy,
Orange,	scipy...
Well,	yeah,	it	uses	camelCase
simplecv-js



HELLO	WORLD



COORDINATES



FEATURE	DETECTION
Edges
Lines
Corners
Circles
Blobs



BLOB
A	region	of	an	image	in	which	some	properties	are	constant	or
vary	within	a	prescribed	range	of	values.

Blue	M&Ms	are	blobs

m_and_ms	=	Image('m&ms.jpg')
blue_dist	=	m_and_ms.colorDistance(Color.BLUE)
blue_dist.show()





BLUE	BLOBS

blue_dist	=	blue_dist.invert()
blobs	=	blue_dist.findBlobs()
print	len(blobs)
>>	122

blobs.draw(Color.RED,	width=-1)
blue_dist.show()





POLISHING	IT
findBlobs(minsize,	maxsize,	threshval,	...)

blue_dist.findBlobs(minsize=200)
blobs	=	blobs.filter(blobs.area()	>	200)
len(blobs)
>>	36

average_area	=	np.average(blobs.area())
>>	37792.77

blue_dist	=	blue_dist.scale(0.35)
blobs	=	blue_dist.findBlobs(threshval=177,	minsize=100)
len(blobs)
>>	25





RULES
Dynamic	is	better	than	fixed,	but	harder	to	achieve.
If	color	is	not	needed,	drop	it,	at	least	until	needed.	
The	smaller	the	picture,	less	information,	faster	processing.
Always	use	the	easiest	solution,	which	will	usually	be	the
fastest	too.
Real	life	vs	laboratory	situations.
Some	things	are	harder	than	they	look	like.
When	working	in	artificial	vision,	don't	forget	about	other
input	sources	(time,	sounds,	etc).



GOLDEN	RULE
Always	do	in	hardware	what	you	can	do	in	hardware.



COLOR	SPACES
RGB	/	BGR
image.toRGB()

HSV	(HUE	SATURATION	VALUE)
image.toHSV()

YCBCR
image.toYCbCr()
http://bit.ly/1dSSoI2	



HUEDISTANCE

blue_hue_dist	=	m_and_ms.hueDistance((0,117,245))





IDEAL

blue_hue_dist	=	m_and_ms.hueDistance(Color.BLUE)





BINARIZE
Creates	a	binary	(black/white)	image.	It's	got	many
parameters	you	can	tweak.
Use	Otsu's	method	by	default,	adjusting	the	threshold
dynamically	for	better	results.

blue_dist.binarize(blocksize=501).show()	





MATCHING





Detector

Descriptor

Matcher

Filtering	or	Pruning	best	matches



DETECTORS
They	need	to	be	effective	with	changes	in:

Viewpoint	
Scale	
Blur	
Illumination
Noise



DETECTORS

CORNERS
Hessian	Affine
Harris	Affine
FAST

KEYPOINTS
SIFT
SURF
MSER
ORB	(Tracking)
BRISK	(Tracking)
FREAK	(Tracking)

MANY
MORE

Find	ROIs



DESCRIPTORS
Speed	vs	correctness

SURF
SIFT
LAZY
ORB
BRIEF
RIFF
etc.



MATCHERS
FLANN
Brute	Force



PRUNING
Cross-check
Ratio-Test
shape	overlapping	



MATCHING
Template	or	Query	image	(Choose	wisely)
Sample	or	Train	image



result_image	=	sample.drawKeypointMatches(template)

skp,	tkp	=	sample.findKeypointMatches(template)

skp	-	Keypoints	matched	in	sample	
tkp	-	Keypoints	matched	in	template





FINDKEYPOINTMATCH
Detection:	Hessian	affine	
Description:	SURF
Matching:	FLANN	Knn
Filtering:	Lowe's	ratio	test
find	an	Homography
Returns	a	FeatureSet	with	one	KeypointMatch



	TEMPLATE	



	SAMPLE	



FINDKEYPOINTMATCH

coupons	=	Image("coupons.jpg")
coupon	=	Image("coupon.jpg")
match	=	coupons.findKeypointMatch(coupon)
match.draw(width=10,	color=Color.GREEN)
uno.save("result.jpg")	





2ND	EXAMPLE







FAILS



	MANY	OUTLIERS	



CLUSTERING

def	find_clusters(keypoints,	separator=None):
				features	=	FeatureSet(keypoints)
				if	separator	is	None:
								separator	=	np.average(features.area())

				features	=	features.filter(
								features.area()	>	separator
				)
				return	features.cluster(
								method="hierarchical",	
								properties="position"
				)



BIGGEST	CLUSTER

def	find_biggest_cluster(clusters):
				max_number_of_clusters	=	0
				for	cluster	in	clusters:
								if	len(cluster)	>	max_number_of_clusters:
												biggest_cluster	=	cluster
												max_number_of_clusters	=	len(cluster)

return	biggest_cluster







NORMAL	DISTRIBUTION

Point	=	namedtuple('Point',	'x	y')
def	distance_between_points(point_one,	point_two):
				return	sqrt(
								pow((point_one.x	-	point_two.x),	2)	+	\
								pow((point_one.y	-	point_two.y),	2)
				)

skp_set	=	FeatureSet(biggest_cluster)
x_avg,	y_avg	=	find_centroid(skp_set)
centroid	=	Point(x_avg,	y_avg)
uno.drawRectangle(
				x_avg,	y_avg,	20,	20,	width=30,	color=Color.RED
)



NORMAL	DISTRIBUTION

distances	=	[]
for	kp	in	biggest_cluster:
				distances.append(distance_between_points(kp,	centroid))

mu,	sigma	=	cv2.meanStdDev(np.array(distances))
mu	=	mu[0][0]
sigma	=	sigma[0][0]

for	kp	in	skp:
				if	distance_between_points(kp,	centroid)	<	(mu	+	2*sigma):
								uno.drawRectangle(
												kp.x,	kp.y,	20,	20,	width=30,	color=Color.GREEN
								)



NORMAL	DISTRIBUTION



REAL	WORLD	EXAMPLE







DETECTION



HAAR
FACE	DETECTION

Haar-like	features	2001	Viola-Jones







HAAR
Needs	to	be	trained	with	hundreds/thousands
Scale	invariant
NOT	Rotation	invariant
Fast	and	robust
Not	only	for	faces

How	face	detection	works



HAAR

friends.listHaarFeatures()
['right_ear.xml',	'right_eye.xml',	'nose.xml',	'face4.xml',	'glasses.xml',	...]				

faces	=	friends.findHaarFeatures("face.xml")
faces.draw(width=10,	color=Color.RED)
faces.save('result.jpg')



1	MISS	FACE.XML



FACE2.XML



	

VIDEO	DEMO
http://www.youtube.com/watch?v=VP3h8qf9GZ4



TRACKING



TRACKING
Detection	!=	tracking
Uses	information	from	previous	frames
Initially	tracks	what	we	want

SOME	ALTERNATIVES

Optic	Flow:	Lucas-Kanade
Descriptors:	SURF
Probability/Statistics	and	histograms:	Camshift



CAMSHIFT
Effective	for	tracking	simple	and	constant	objects
with	homogeneous	colors,	like	faces.
Gary	Bradski	in	1998
Original	implementation	has	problems	with	similar	color
objects	around	or	crossing	trajectories	and		lightning
changes.



SIMPLE	EXAMPLE
from	SimpleCV	import	*

video	=	VirtualCamera("jack.mp4",	'video')
video_stream	=	VideoStream(
				"jack_tracking.mp4",	framefill=False,	codec="mp4v"
)

track_set	=	[]
current	=	video.getImage()

while	(disp.isNotDone()):
				frame	=	video.getImage()
				track_set	=	frame.track(
								'camshift',	track_set,	current,	[100,	100,	50,	50]
				)
				track_set.drawBB()
				current	=	frame
				frame.save(video_stream)





VIDEO	DEMO
http://www.youtube.com/watch?v=QHOYG_CYPKo



MORE	COMPLEX
Initialization

video_stream	=	VideoStream(
				"jack_tracking.avi",	framefill=False,	
				codec="mp4v"
)
video	=	VirtualCamera("jack.mp4",	'video')

disp	=	Display()

detected	=	False
current	=	video.getImage().scale(0.6)
tracked_objects	=	[]
last_diff	=	None



while	(disp.isNotDone()):
				frame	=	video.getImage().scale(0.6)

				#	Scene	changes
				diff	=	cv2.absdiff(frame.getNumpyCv2(),	current.getNumpyCv2())
				if	last_diff	and	diff.sum()	>	last_diff	*	6:
								detected	=	False
				last_diff	=	diff.sum()

				#	Detects	faces	and	restarts	tracking
				faces	=	frame.findHaarFeatures('face2.xml')
				if	faces	and	not	detected:
								tracked_objects	=	[]
								final_faces	=	[]
								for	face	in	faces:
												if	face.area()	>	65:
																tracked_objects.append([])
																final_faces.append(face)
																detected	=	True



				#	Restart	if	tracking	grows	too	much
				if	detected:
								for	i,	track_set	in	enumerate(tracked_objects):
												track_set	=	frame.track(
																'camshift',	track_set,	current,
																final_faces[i].boundingBox()
												)

												#	Restart	detection	and	tracking
												if	track_set[-1].area	>	final_faces[i].area()	*	3	\
																or	not	detected:
																				detected	=	False
																				break

												#	Update	tracked	object	and	draw	it
												tracked_objects[i]	=	track_set
												track_set.drawBB()

				current	=	frame
				frame.save(video_stream)



MOG



BACKGROUND	SUBSTRACTION
Separate	people	and	objects	that	move	(foreground)	from
the	fixed	environment	(background)
MOG	-	Adaptative	Mixture	Gaussian	Model



	

VIDEO	DEMO
http://www.youtube.com/watch?v=wm7HWdYSYkI



BACKGROUND	SUBSTRACTION
mog	=	MOGSegmentation(
				history=200,	nMixtures=5,	backgroundRatio=0.3,	noiseSigma=16,
				learningRate=0.3
)

video	=	VirtualCamera('semaforo.mp4',	'video')
video_stream	=	VideoStream("mog.mp4",	framefill=False,	codec="mp4v")

while	(disp.isNotDone()):
				frame	=	video.getImage().scale(0.5)

				mog.addImage(frame)
				#	segmentedImage	=	mog.getSegmentedImage()
				blobs	=	mog.getSegmentedBlobs()
				if	blobs:
								blobs.draw(width=-1)

				frame.save(video_stream)



RED-LIGHT	HAL



RED	LIGHT	RUNNERS
1-	Detect	if	traffic	light	is	red,	otherwise	it's	green.	Using
hysteresis.
2-	Project	a	line	for	runners.
3-	Do	MOG	and	pruning	for	finding	cars.
4-	When	traffic	light	is	RED,	if	a	car	blob	intersects	the	line,
then	it's	a	runner.
5-	Recognize	car	to	count	it	only	once.



red_light_bb	=	[432,	212,	13,	13]
cross_line	=	Line(
				frame.scale(0.5),	((329,	230),	(10,	360))
)

RED	=	False
number_of_opposite	=	0
HISTERESIS_FRAMES	=	5



def	is_traffic_light_red(frame):
				red_light	=	frame.crop(*red_light_bb)

				#	BLACK	(30,	28,	35)
				#	RED		(21,	17,	51)
				if	red_light.meanColor()[2]	>	42:
								return	True

				return	False



def	hysteresis(red_detected=False,	green_detected=False):
				global	RED,	number_of_opposite
				
				if	RED	and	green_detected:
								number_of_opposite	+=	1
								if	number_of_opposite	==	HISTERESIS_FRAMES:
												RED	=	False
												number_of_opposite	=	0
				elif	not	RED	and	red_detected:
								number_of_opposite	+=	1
								if	number_of_opposite	==	HISTERESIS_FRAMES:
												RED	=	True
												number_of_opposite	=	0
				else:
								number_of_opposite	=	0



while	(disp.isNotDone()):
				frame	=	video.getImage()
				small_frame	=	frame.scale(0.5)
				mog.addImage(small_frame)

				if	is_traffic_light_red(frame):
								hysteresis(red_detected=True)
								if	RED:
												blobs	=	mog.getSegmentedBlobs()
												if	blobs:
																big_blobs	=	blobs.filter(blobs.area()	>	1000)

																for	car	in	big_blobs:
																				if	cross_line.intersects(car.getFullMask()):
																								#	RED	LIGHT	RUNNER
																								small_frame.drawRectangle(
																												*car.boundingBox(),	color=Color.RED,	width=3
																								)
				else:
								hysteresis(green_detected=True)

				small_frame.save(disp)



	

VIDEO	DEMO
http://www.youtube.com/watch?v=RfG0HTiuBYY



FIRST	PROTOTYPE



RASPBERRY

Autonomous	system,	ethernet	connected,	uploads	runner
videos	online.
No	night	time	support	yet.
Slower,	not	real	time,	discards	green	parts.

Raspberry	SimpleCV	Raspicam



THANKS

QUESTIONS?


